Reduction of artefacts caused by missing ray-sum data in optical-CT imaging of implants in gel dosimeters
نویسندگان
چکیده
This study demonstrates the degradation in image quality, and subsequent dose evaluation inaccuracies, that are encountered when an optical-CT system reconstructs an image slice of a gel dosimeter containing an opaque implant, and evaluates the feasibility of a simple correction method to improve the accuracy of radiotherapy dose distribution measurements under these circumstances. MATLAB was used to create a number of different virtual phantoms and treatment plans along with their synthetic projections and reconstructed data sets. The results have illustrated that accurately evaluating 3D gel dose distributions in the vicinity of high-Z interfaces is not possible using the filtered back projection method, without correction, as there are serious artefacts throughout the dose volume that are induced by the missing ray-sum data. Equivalent artefacts were present in physical measurements of irradiated PAGAT gel containers when read by an optical-CT system. An interpolation correction performed prior to reconstruction via the filtered back projection algorithm has been shown to significantly improve dose evaluation accuracy to within approximately 15 mm of the opacity. With careful placement of the implant within the gel sample, and use of the linear interpolation method described in this study, there is the potential for more accurate optical CT imaging of gels containing opaque objects.
منابع مشابه
Investigation of dosimetric characteristic of NIPAM polymer gel using x-ray CT
Introduction: Polymer gel dosimeters contain chemical materials sensitive to the radiation which are polymerized by the radiation as a function of absorbed dose. So information of spatial dose distribution can be extracted by imaging from irradiated gel. Among imaging techniques, computed tomography (CT) poses as an attractive method because of practical advantages such as acce...
متن کاملBrachytherapy polymer gel dosimetry with xCT
ABSTRACTBackground: Polymer gels are an emerging new class of dosimeters which are being applied to the challenges of modern radiotherapy modalities. Research on gel dosimetry involves several scientific domains, one of which is the imaging techniques with which dose data is extracted from the dosimeters. In the current work, we present our preliminary results of investigating capability of X-r...
متن کاملDesigning and developing an in-house CCD based optical CT scanner for gel dosimetry
Introduction: Measurement of the complex 3D radiation dose distribution created with advanced radiotherapy techniques such as IMRT and SRS became very important. Polymer gel dosimetry (PGD) is proposed method to recording this dose distribution. MRI, X-ray CT, ultrasound, spectrophotometry and optical CT scanners can be used for readout of Polymer gel dosimeters. Although MRI i...
متن کاملThree dimensional radiation dosimetry using polymer gels
The use of polymer gels to record radiation dose distributions in three dimensions was first proposed in 1992 as a proof-of-principle [1]. The accuracy of these early polymer gel dosimeters and scanning methods was not sufficient for most clinical applications [2]. Since then, several efforts were made to increase the accuracy and precision of both the physical gel dosimeter and the scanning te...
متن کاملImpact of Photon Spectra on the Sensitivity of Polymer Gel Dosimetry by X-Ray Computed Tomography
Introduction: The purpose of the current study was to investigate the effect of X-ray spectra on the sensitivity of a polymer gel dosimeter imaged with a conventional computed tomography (CT) scanner. Material and Methods: The whole process of CT imaging of an irradiated polymer gel was simulated by MCNPX Monte Carlo (MC) code. The imaging of polyacrylamide gel was accomplished by means of a co...
متن کامل